Modified Dai-Yuan iterative scheme for nonlinear systems and its application

نویسندگان

چکیده

By exploiting the idea employed in spectral Dai-Yuan method by Xue et al. [IEICE Trans. Inf. Syst. 101 (12)2984-2990 (2018)] and approach applied modified Hager-Zhang scheme for nonsmooth optimization [PLos ONE 11(10): e0164289 (2016)], we develop a type iterative convex constrained nonlinear monotone system. The scheme's algorithm is obtained combining its search direction with projection [Kluwer Academic Publishers, pp. 355-369(1998)]. One of new attribute that it derivative-free, which makes ideal solving non-smooth problems. Furthermore, demonstrate method's application image de-blurring problems comparing performance recent effective method. employing mild assumptions, global convergence determined results some numerical experiments show to be favorable compared methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation

In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

CONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE FOR THE MODIFIED NOOR ITERATIVE SCHEME

We study the convergence of the modified Noor iterative scheme for the class of asymptotically pseudocontractive mappings in the intermediate sense which is not necessarily Lipschitzian. Our results improves, extends and unifies the results of Schu [23] and Qin {it et al.} [25].  

متن کامل

An Iterative Decision-Making Scheme for Markov Decision Processes and Its Application to Self-adaptive Systems

Software is often governed by and thus adapts to phenomena that occur at runtime. Unlike traditional decision problems, where a decision-making model is determined for reasoning, the adaptation logic of such software is concerned with empirical data and is subject to practical constraints. We present an Iterative Decision-Making Scheme (IDMS) that infers both point and interval estimates for th...

متن کامل

A Novel Iterative Scheme and Its Application to Differential Equations

The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algebra, Control and Optimization

سال: 2023

ISSN: ['2155-3297', '2155-3289']

DOI: https://doi.org/10.3934/naco.2021044